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Abstract—Text classification is a central field of inquiry in natu-
ral language processing (NLP). Although some models learn local
semantic features and global long-term dependencies simultane-
ously, they simply combine them through concatenation either in
a cascade way or in parallel while mutual effects between them
are ignored. In this paper, we propose the Global-Local Mutual
Attention (GLMA) model for text classification problems, which
introduces a mutual attention mechanism for mutual learning
between local semantic features and global long-term dependen-
cies. The mutual attention mechanism consists of a Local-Guided
Global-Attention (LGGA) and a Global-Guided Local-Attention
(GGLA). The LGGA allows to assign weights and combine global
long-term dependencies of word positions that are semantic related.
It captures combined semantics and alleviates the gradient vanish-
ing problem. The GGLA automatically assigns more weights to
relevant local semantic features, which captures key local semantic
information and filters both noises and irrelevant words/phrases.
Furthermore, a weighted-over-time pooling operation is developed
to aggregate the most informative and discriminative features
for classification. Extensive experiments demonstrate that our
model obtains the state-of-the-art performance on seven bench-
mark datasets and sixteen Amazon product reviews datasets. Both
the result analysis and the mutual attention weights visualization
further demonstrate the effectiveness of the proposed model.

Index Terms—Recurrent Neural Network (RNN), Convolutional
Neural Network (CNN), Mutual Attention Mechanism, Weighted-
over-time Pooling, Text Classification.
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I. INTRODUCTION

T EXT classification [1] is a fundamental and traditional task
in natural language processing (NLP) which attracts con-

siderable attention from researchers. Text classification is a task
in NLP where a single or multiple predefined category(ies) is/are
assigned to a sequence of texts. The aim of text classification
is learning sequence representation for sentiment analysis [2],
question classification [3], and topic classification [4].

Modeling of global long-term dependencies and local seman-
tic features are two ways widely used for text classification.
Recently, Recurrent Neural Networks (RNNs) are widely ap-
plied to capture global context features and model the long-term
dependency of text sequences. However, RNNs tend to model
the global long-term dependency of the entire text sequences, so
that they may ignore some important local semantic information
for correct classification [5]. On the other hand, Convolutional
Neural Networks (CNNs) are often used to capture discrimina-
tive local semantic features for text classification [6]–[9], while
they neglect global long-term dependency of text sequences.
However, it has been proved that global contexts provide useful
topical information [10], and several studies in psychology
have also shown that global contexts help language compre-
hension [11]. Hence, it is necessary to model global long-term
dependencies and local semantic features simultaneously for text
classification tasks.

Therefore, researches try to model global long-term depen-
dencies and local semantic features simultaneously and connect
the two parts in a cascaded way [12]–[16]. However, the model
will be deeper in this manner which may aggravate gradient
vanishing problems and will have troubles in the training. Some
other researches combine the global long-term dependency and
local semantic features through concatenation [17]. However,
concatenated features may lead to redundancies [18]. Moreover,
they cannot capture the combined semantics of text sequences
because RNNs are sequential models and the global long-term
dependencies are accumulated sequentially [19]. On the other
hand, not all the local semantic features extracted by CNN are
useful because they often contain noises or redundancies.

To address these issues, we propose a novel model named
Global-Local Mutual Attention (GLMA) model for text clas-
sification. Firstly, GLMA extracts long-term dependencies by
a bidirectional long-short term memory (bi-LSTM) and lo-
cal semantic features by a multi-scale CNN. After that, a
GLMA mechanism consisting of local-guided global-attention
(LGGA) and global-guided local-attention (GGLA) is designed.
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LGGA treats local semantic features as guiding information
and global long-term dependencies as target information. For
the local semantic feature at each word position, LGGA learns
to weigh global long-term dependencies of different positions
with learned weights. The learned weights are significantly
large for global long-term dependencies that are semantically
correlated. Thus, the global long-term dependencies are captured
and the combined semantics are obtained. The learned weights
also create direct connections to global long-term dependen-
cies (hidden states of bi-LSTM) and act as the weighted skip
connections [20] to alleviate the gradient vanishing problem by
shortening the path of gradient propagation in bi-LSTM. On
the other hand, GGLA uses global long-term dependencies as
guiding information and local semantic features as target infor-
mation. For each word position of global long-term dependency,
GGLA automatically assigns larger weights to relevant local
semantic features. Therefore, the GLMA mechanism can model
mutual effects between each position of inputs. Furthermore, a
weighted-over-time pooling is proposed to aggregate the most
informative global-local features. Finally, the global-local fea-
tures are fed into a fully connected layer and a softmax layer to
obtain classification results.

The main contributions can be summarized as follows:
1) We propose a novel Global-Local Mutual Attention

(GLMA) model with a mutual attention mechanism
consisting of a LGGA and a GGLA. The LGGA learns
to weight long-term dependencies with learned weights
which capture combined semantics. It creates direct
connections to alleviate the gradient vanishing problem.
GGLA automatically assigns larger weights to relevant
local semantic features to capture key local semantic
features.

2) A weighted-over-time pooling operation is proposed to ag-
gregate the most informative and discriminative features.
Our experiments prove that weighted-over-time pooling is
more effective than max-over-time and average-over-time
pooling operation.

3) GLMA is extensively evaluated on seven benchmark text
classification datasets and sixteen datasets from Amazon
product reviews. Experiment results demonstrate GLMA
outperforms existing models. Visualization results of mu-
tual attention weights further prove the effectiveness of
our model.

The rest of this paper is organized as follows. Section II
discusses related work. Section III formally describes the struc-
ture of the proposed model and the important components in
detail. The results of the proposed method on text classification,
the experimental analysis, qualitative analysis, attention weights
visualization, and gradient analysis are presented in Section IV.
Finally, we conclude the study and suggest future work in
Section V.

II. RELATED WORK

In this paper, we will focus on introducing the deep learning
approaches for text classification. Approaches for modeling
local semantic features and global long-term dependencies fall

into three categories, including CNN-based, RNN-based, and
combined approaches. Moreover, we will also introduce the
relevant attention mechanism.

A. CNN-Based Approaches

CNN has a good performance on extracting local semantic
features at different positions of a text sequence. A multi-channel
CNN with two sets of word vectors, static vectors, and fine-tuned
vectors is proposed for text classification [6]. To capture both
short and long-range relations over a sentence, The Dynamic
Convolutional Neural Network (DCNN) which has a global
pooling operation with different pooling rate is proposed [7].
Shallow CNN can only extract local features with limit window
size. Therefore, a very deep CNN is used in text classification to
extract hierarchical local features [21]. Similarly, a deep pyramid
CNN [22] which carefully studies the deepening of word-level
CNN is proposed to enable the discovery of long-range as-
sociations in text. By increasing the depth of network, this
approach achieves good performance and reduces training time.
However, most of the models use a fixed window size in CNN
so that they cannot learn variable n-gram features. A densely
connected CNN with multi-scale feature attention is proposed
to extract variable n-gram features for text classification [9]. The
dense connections build short-cut paths between upstream and
downstream convolutional blocks, which enable the model to
compose features of larger scale from those of smaller scale to
produce variable n-gram features.

Although CNN-based approaches emphasize the extracting
of variable n-gram features, they cannot learn sequential corre-
lations. Moreover, the local semantic features extracted by CNN
may contain redundancies.

B. RNN-Based Approaches

RNN is suitable for handling text sequences and model-
ing long-term dependencies sequentially [23]. Particularly, bi-
directional recurrent neural network is able to capture global
long-term dependencies. Therefore, many RNN variants are pro-
posed for text classification. The gated recurrent neural network
models the semantics of sentences and their relations adap-
tively [24]. The approach first learns representation with CNN or
Long Short-Term Memory (LSTM). Afterwards, semantics of
sentences and their relations are adaptively encoded in document
representation with gated recurrent neural network. A hierar-
chical attention model which incorporates attention mechanism
into hierarchical Gate Recurrent Unit (GRU) is proposed to
capture the important information of a document [25]. The
residual networks are incorporated into RNN to model longer
text sequences and alleviate gradient vanishing problem [26].
An RNN variant Cached Long Short-Term Memory model is
proposed to capture local and global semantic features of the
long text sequence [27]. A memory with low forgetting rate
captures the global semantic features while a memory with high
forgetting rate captures the local semantic features.

The aforementioned RNN-based modes are specialized for
sequential modeling with a recurrent hidden state whose activa-
tion at each time step depends on that of the previous time step’s.
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In sequential model, each hidden state is greatly affected by
surrounding inputs and could not model long-term dependencies
with a skipped span. It is problematic to capture combined
semantics of text sequences.

C. Combined Approaches

Some researchers attempt to combine the advantages of CNN
and RNN by using them to extract global long-term depen-
dencies and local semantic features. C-LSTM [12] captures
both local features of phrases as well as temporal sentence
semantics. It utilizes CNN to extract a sequence of higher-level
phrase representation which is then fed into a LSTM to obtain
the sentence representation. A regional CNN-LSTM considers
both the regional information within sentences and long-term
dependency across sentences [13]. Similarly, Wang et al. [14]
use CNN to capture local semantic features of text sequences and
feed them into a RNN model to learn long-term dependency.
On the contrary, global long-term dependency can firstly be
extracted by RNN which is then fed into CNN to get the final
representation [15]. These models capture global long-term
dependencies and local semantic features simultaneously in a
cascaded way. A hybrid conv-RNN framework combines the
long-term dependencies and local semantic features through
concatenation using both recurrent and convolutional neural
networks. It seamlessly integrates merits on extracting different
aspects of linguistic information from both structures [17]. Self-
Attention Sandwich Neural Network (SA-SNN) [16] is proposed
to extract local semantic representation and global structure
representation simultaneously. It considers effective fusion of
both with self-attention mechanism.

Combined approaches learn local semantic features and
global long-term dependencies of text sequences simultane-
ously, but both are connected in a cascaded way [12]–[16]
or combined through concatenation [17]. The cascaded way
will deepen the depth of model and aggravate gradient van-
ishing problems. Furthermore, concatenated features may have
redundancies. Moreover, on one hand, the global long-term
dependencies extracted by a sequential recurrent neural network
are combined sequentially so the combined semantics cannot
be extracted well. On the other hand, local semantic features
extracted by CNN may contain redundant features. The com-
bined semantics and key local features are essential for text
classification and they can interact with each other. However,
exiting methods seldom model the mutual effect between global
long-term dependencies and local features. Therefore, in this
paper, we design a mutual attention mechanism consisting of a
LGGA for capturing complex combined semantics and a GGLA
for extracting key local semantic features.

D. Attention Mechanism

The attention mechanism [28] is proposed to compute align-
ment scores between source vectors s = [s1, s2, . . ., sn] and a
target vector t by a compatibility function f(·) which measures
the similarity between s and t. Then, a softmax function is
used to calculate a probability distribution p(z = i|si, t)(i =
1, 2, . . ., n) by normalizing over all n elements of s. A large

p(z = i|si, t) means that si contributes important information
to t. The attention mechanism can be summarized as follows:

p(z = i|si, t) = exp(f(si, t))
∑n

j=1 exp(f(sj , t))
. (1)

The output o of this attention mechanism is a weighted sum of
all elements in source s.

o =
n∑

i=1

p(z = i|si, t)si. (2)

There are many variants of attention mechanism, such as
co-attention mechanism [29], [30] and self-attention [31], [32].
The co-attention mechanism is a special case of the afore-
mentioned attention mechanism. It computes attention weights
between two input sequences from different modalities, such as
image and text, for visual question answering. The co-attention
mechanism uses one of the modalities as source vectors and
the other is compressed into a vector as target vector. Self-
attention is another special case of the attention mechanism
which replaces target vector t with an element si from the
source input. It relates elements at different positions from
a single sequence by computing the attention between each
pair of elements si and sj . Self-attention is very expressive
for modeling long-term dependency in a variety of NLP tasks.
Most recently, the Transformer [31] based on self-attention has
achieved state-of-the-art performance on machine translation.
As a transformer-based approach, BERT (Bidirectional Encoder
Representations from Transformers) [33] has achieved amazing
results in many language understanding tasks, including the
tasks of text classification.

III. GLOBAL-LOCAL MUTUAL ATTENTION MODEL

The overall framework of the GLMA model is shown in Fig. 1.
It consists of two branches: the upper one captures global long-
term dependencies with a bi-LSTM while the lower one extracts
local semantic features with a convolution from the shared word
embedding of the input text sequences. Both features are fed into
the local-guided global attention and global-guided local atten-
tion to obtain global and local attention contexts, respectively.
After that, both global and local attention contexts are fed into
two weighted-over-time pooling operations, respectively. Then
the two branches are combined by a fully connected layer and
the final predictions are made by a softmax function layer.

For a text classification task, a training set of pair-wise data
S = (Wn, yn)

N
n=1 is given, where Wn = w1, w2, . . ., wT , yn,

T , and N denote the text sequence, its corresponding label,
the length of a text sequence, and the number of samples in
the dataset, respectively. Let xi ∈ Rd be the d-dimensional
pre-trained word embedding vector of the ith word wi in a text
sequence and then the input text sequence can be represented as
an embedding:

x1:T = x1 ⊕ x2 ⊕ . . .⊕ xT , (3)

where ⊕ and x1:T ∈ RT×d denote the concatenation operation
and the input of bi-LSTM and CNN in our proposed model,
respectively.
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Fig. 1. The framework of the GLMA model. For the upper branch, different colors represent proportions of words at each position.

Global Long-Term Dependencies Extraction: The Long
Short-Term Memory (LSTM) [34] is a popular RNN model and
has been widely applied in various NLP tasks [35]. However,
a single-direction LSTM is insufficient for learning long-term
dependencies without utilizing the contextual information from
future words. For modeling the global long-term dependency, a
bi-LSTM [36] is employed to utilize both previous and future
contexts by processing the sequence in both forward and back-
ward directions. At each time step t, the output vectors of the
two directions are concatenated.

Firstly, let kglo be the hidden state dimension of a single di-
rection LSTM. The hidden state ht ∈ Rkglo of a single direction
LSTM at time step t is updated as follows:

⎛

⎜
⎜
⎝

it
ft
ot

gt

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

σ
σ
σ

tanh

⎞

⎟
⎟
⎠M

(
ht−1
xt

)

, (4)

ct = ft � ct−1 + it � gt, (5)

ht = ot � tanh (ct) , (6)

where �, ct, gt, σ(·), M, it, ft and ot denote the element-wise
production operation, the cell memory vector, the intermediate
calculation, the sigmoid function, the affine transform function
consisting of trainable parameters, the input gate, the forget gate,
and the output gate of a single directional LSTM, respectively.

Then, we feed the input text sequence x1:T to the LSTM in
the forward direction and obtain forward hidden state

−→
h t with

Equations (4) to (6). We also update the backward hidden state←−
h t by feeding the sequences into LSTM in a reverse direction.
The hidden states of the two directions are concatenated as
follows:

hfb
t =

−→
h t ⊕←−h t, (7)

where t = 1, 2, . . ., T and hfb
t represents the global long-term

dependency at time step t as it contains text sequence informa-
tion from both directions. All the hidden states are collected into
a matrix, which is defined as

H = [hfb
1 ,hfb

2 , . . .,hfb
T ], (8)

where H ∈ RT×2kglo and each row of H represents the global
long-term dependency at the corresponding position of the input
text sequence. Finally, theH and the local semantic features to be
described below will be fed into the mutual attention mechanism
as inputs.

Local Semantic Features Extraction: A one-dimensional con-
volution is employed to extract local features [6], which involves
filter vectors sliding over a sequence and detects local semantic
features at different positions. We denote F ∈ Rw×d×kloc as
the convolution filter of the convolution operation where w, d,
and kloc denote the width of the convolution filter, the number
of input dimensions, the number of convolution filters, respec-
tively. Note that the height of convolution filter is equal to the
input dimension d. For a word at position i, we take the text
subsequence of word embedding xi−w/2+1:i+w/2 if w is even
or xi−�w/2�:i+�w/2� otherwise as inputs. Zeros are padded if the
text subsequence has the number of elements less than w. The
convolution operation is formulated as follows:

c̃i =

{
f(xi−w/2+1:i+w/2 ∗ F + b), if w is even

f(xi−�w/2�:i+�w/2� ∗ F + b), if w is odd
(9)

where xi−w/2+1:i+w/2 refers to the concatenation of word em-
bedding vectors xi−w/2+1, . . ., xi, . . ., xi+w/2, ∗, b, f , and c̃i
denote the convolution operation, the bias term, a nonlinear
transformation function (can be either sigmoid, hyperbolic tan-
gent, etc...), and the kloc dimension local w-gram feature vector
at ith position of the text sequence, respectively. The filter is
applied to each position of the text sequence with zero-padding
to produce a feature map with the same length as the input as
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Fig. 2. The proposed global-local mutual attention (GLMA) mechanism which consists of the local-guided global attention (LGGA, the upper part) and the
global-guided local attention (GGLA, the bottom part).

follows:

C̃ = [c̃1, c̃2, . . ., c̃T ], (10)

where C̃ ∈ RT×kloc .
The local semantic features are obtained as follows if multi-

scale filters (r denotes the number of scales with varying scale
w) are used to generate variable local w-gram features at each
position:

C = [C̃(1), C̃(2), . . ., C̃(r)], (11)

where C ∈ RT×rkloc .

A. Mutual Attention Mechanism

Both the global long-term dependencies (H) and local se-
mantic features (C) at each word position are extracted inde-
pendently from the same text sequence. However, the global
long-term dependencies or the local semantic features being
extracted alone may not be optimal for classification. On one
hand, although the bi-LSTM is able to capture long-term infor-
mation, it is a sequential model and cannot extract combined
semantics because hidden states are sequentially obtained and
equally combined at different time steps. On the other hand, text
sequences often contain noises or irrelevant words/phrases so
that not all extracted local semantic features are useful. Conse-
quently, a further refinement on both the global dependencies
and the local semantic features is desirable for obtaining the
optimal features.

Inspired by the word attention techniques for neural machine
translation tasks [31], [37] and co-attention mechanism for vi-
sual question answering tasks [29], we propose the global-local

mutual attention mechanism containing the local-guided global
attention (LGGA) and global-guided local attention (GGLA) to
model the mutual effect betweenH andC of text sequences. The
details of the proposed mutual attention mechanism are shown
in Fig 2.

As shown in Fig. 2, H and C are linearly embedded into m
different subspaces with lower dimension of k before being fed
to the LGGA and GGLA. Here, m denotes the parallel mutual
attention layers, or heads which enables the model to attend
features in m different representation subspaces [31]. Note that
the dimension k is much smaller than feature dimensions 2kglo
and rkloc. The total computational cost is similar to that of
single-head’s with the original feature dimension because the
dimension of each head is reduced. H and C are projected to
each subspace i (i = 1, 2, . . .,m) as follows:

H̄i = HWglo
i , (12)

C̄i = CWloc
i , (13)

where both Wglo
i ∈ R2kglo×k and Wloc

i ∈ Rrkloc×k denote the
weighting matrices.

1) Local-Guided Global Attention (LGGA): In LGGA, the
global attention contexts of the global long-term dependencies
H̄i are obtained according to the local semantic features C̄i

of each word position. Specifically, given source vectors (C̄i

as guiding information) and target vectors (H̄i as target infor-
mation), the dot-product between the source vectors and the
target vectors is computed. After it is divided by

√
k, a softmax

function is applied to each row to obtain the weights of the
target H̄i. In other words, it allows every position of local
semantic features to attend over all positions of global long-term
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dependencies. The LGGA computes the global attention weights
(Ai) as follows:

Ai = softmax

(
C̄iH̄

T
i√

k

)

, (14)

H̄att
i = AiH̄i, (15)

where Ai ∈ RT×T and H̄att
i (i = 1, 2, . . .,m) denotes the

global attention weights between LGGA and the ith head of
global attention contexts. Note that we apply a softmax function
along each row (the sum of each row inAi is equal to 1) to obtain
the global attention weights. With global attention weights, the
proposed model keeps the useful distant information of H and
obtains sufficient meaningful combined semantics from H that
are semantically related to the learned weights.

After that, all the heads of global attention contexts are
concatenated as follows:

H̄att = [H̄att
1 , H̄att

2 , . . ., H̄att
m ], (16)

where H̄att ∈ RT×mk. Through the LGGA, there are paths
directly connecting all of the hidden states of the bi-LSTM which
play a similar role as the weighted skip connections [20] so the
LGGA alleviates the gradient vanishing problem by shortening
the path of gradient propagation.

2) Global-Guided Local Attention (GGLA): Similarly, in the
GGLA, the local attention contexts of the local semantic features
are extracted according to the global long-term dependency at
each word position. For the global long-term dependency at each
word position, the GGLA automatically assigns larger weights
to the more relevant and informative local semantic features as
follows:

Bi = softmax

(
H̄iC̄

T
i√

k

)

, (17)

C̄att
i = BiC̄i, (18)

where Bi ∈ RT×T and C̄att
i (i = 1, 2, ..., m) denotes the local

attention weights between the GGLA and the ith head of local
attention contexts. Note that we apply a softmax function along
each row (the sum of each row of Bi is equal to 1) to obtain
local attention weights. All heads of local attention contexts are
concatenated as follows:

C̄att = [C̄att
1 , C̄att

2 , . . ., C̄att
m ], (19)

where C̄att ∈ RT×mk.
There are two major differences in our work from previous

co-attention mechanisms. Firstly, existing co-attention mech-
anisms [29], [30] only consider the calculation of attention
weights on target information from the whole guiding infor-
mation. We argue that this may limit the amount of possible in-
teractions between guiding and target information. The GLMA
has fine-grain interactions as it computes attention weights
between any guiding information and any target information.
Secondly, existing co-attention mechanisms calculate attention
weights in the original feature space. In contrast, the GLMA has
multi-head and calculates attention weights on different feature
representation subspaces to obtain diversified features.

Here, we discuss the difference between the proposed atten-
tion and the multi-head attention mechanism [31]. As mentioned
in [31], attention mechanism can be described as a mapping of
a query and a set of key-value pairs to an output. The output
is computed as a weighted sum of the values, where the weight
assigned to each value is computed by a compatibility function of
the query with the corresponding key. The calculation process
of our proposed attention mechanism is similar to the multi-
head attention mechanism. However, they have some essential
differences. First, the multi-head attention mechanism calcu-
lates attention weights between encoder and decoder features,
which are both extracted from self-attention layers. However,
our proposed attention mechanism calculates attention weights
between global and local features, which are both encoder
features from different encoder networks. In other words, our
attention explores the mutual effect between two different scales
of information (global features and local features) from different
network architectures. Second, weighting matrices of key and
value in our proposed attention mechanism are designed to be
shared while the ones in the multi-head attention are different.
The number of parameters can thus be reduced in our proposed
attention mechanism comparing to the multi-head attention. In
addition, since the weighting matrices of key and value are
shared, key and value can be regarded as one scale of features
(global or local), while the query can represent the other one
(local or global). Therefore, it enables our model to learn the
mutual effects of the two different scales of features with the
proposed mutual attention mechanism.

B. Weighted-Over-Time Pooling

Both global attention contexts and local attention contexts
are obtained by the global-local mutual attention mechanism.
Most existing work employs either the max-over-time or the
average-over-time pooling to aggregate the sequence vectors
into one vector over the time dimension [15], [38]. However,
both the max-over-time and the average-over-time pooling lose
position and intensity information of features at different time
dimensions.

In this paper, we propose a weighted-over-time pooling which
adaptively assigns a scalar score over the time dimension to each
feature vector of a sequence and compresses the sequence into
a single vector. Fig. 3 shows the detail of weighted-over-time
pooling operation. The proposed weighted-over-time pooling is
applied to the global attention contexts and the local attention
contexts, respectively. The weighted-over-time pooling on the
global attention contexts is as follows:

α = σ(H̄attW(1) +B(1))w(2) + b(2), (20)

pH
i =

exp(αi)
∑T

j=1 exp(αj)
, (21)

zH = pHH̄att, (22)

where α ∈ RT and pHi (i = 1, 2, . . ., T ). W(1) ∈ Rmk×mk,
w(2) ∈ Rmk, B(1) ∈ RT×mk, and b(2) ∈ RT are learnable pa-
rameters. σ(·), pH ∈ RT , and zH ∈ Rmk denote a sigmoid
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TABLE I
ACCURACIES (%) AND P-VALUES OF THE GLMA AND OTHER STATE-OF-THE-ART MODELS ON SEVEN BENCHMARK DATASETS

1. The results with ∗ are obtained by their published source code or our re-implementation. We are confident that our implementations are correct because they achieve classification
accuracies similar to the reported results in the original papers.
2. The - indicates that the authors of HS-LSTM did not publish the source code of how to pre-process sentences by using some heuristic methods so that we could not re-implement
the results.

Fig. 3. The weighted-over-time pooling operation on global attention contexts
H̄att. Pink color shapes represent input and output, green color shapes are
hidden representation, yellow color shapes are scalar scorespH of each position
of input, and blue color shapes stand for weight matrix. Here, the bias term is
omitted for concision.

activation function, the scalar scores of global attention contexts,
and the final global representation vector, respectively.

Let pC be the scalar scores of local attention contexts and zC

be the final local representation vector. The weighted-over-time
pooling on the local attention contexts is applied in the same
way as in Equations (20) to (22), but with the local attention
contexts as inputs, to obtain pC and zC .

Finally, we feed the final global representation vectors (zH )
and final local representation vectors (zC) to a fully connected
layer with rectified linear unit (ReLU) activation. The output
of fully connected layer is then fed to a softmax function to
predict the probability distributions of categories. The cross-
entropy loss between predicted probability distribution and the
referenced distribution of categories is minimized to learn the
model parameters.

IV. EXPERIMENTS

The effectiveness of the proposed model for text classification
is tested on 23 datasets, including 7 benchmark datasets (Movie
Review [39], SUBJ [40], TREC [41], CR [42], 20New [43],
MPQA [44], and AG [45]) and 16 Amazon product review
datasets [46]. A summary statistics and validation protocols of
these datasets are listed in the Table I of the Supplementary
Material. In addition, these datasets are briefly described in the
Supplementary Material.

A. Experimental Setup

The 300-dimensional pre-trained word2vec1 [47] vectors are
used as word embedding while Rectified Linear Units (RELU)
are used as the nonlinear function in the convolutional layer. The
number of convolution filters kloc is set to 128. The number of
hidden state dimension of bi-LSTM is set to 192 (kgloc = 192).
We choose the head numberm = 8 and the subspace dimensions
k = 64. Both word embedding and fully connected layer employ
Dropout operation with dropout rate of 0.5 and we do not
perform any l2 regularization over the parameters. The gradient-
based optimizer Adam is used to minimize the cross-entropy
loss between predicted and true distributions, and the training
stopped early when the accuracy on development set starts to
drop. The batch size is chosen from 32, 64, and 128 according
to the size of datasets. The learning rate is set to 0.001. The same
parameter configuration is used for all datasets.

B. Comparison Models

For seven benchmark datasets, the experimental results are
compared with other start-of-the-art models including CNN-
multichannel [6], bi-LSTM [16], RCNN [48], C-LSTM [12],
CNN-LSTM-word2vec [14], conv-RNN [17], SA-SNN [16],
Self-Attentive [49], and HS-LSTM [50]. For the 16 Amazon
product review datasets, the experimental results are compared
with SA-SNN [16] and SLSTM [51] models. The description of
these models are listed in the Supplementary Material.

1https://code.google.com/p/word2vec/
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TABLE II
ABLATION STUDIES ON DIFFERENT COMPONENTS OF THE PROPOSED MODEL

C. Experimental Results

Classification accuracies of the proposed GLMA compared
with other approaches are shown in the Table I in the main text
and Table II in Supplementary Material for 7 benchmark datasets
and 16 Amazon product review datasets, respectively. We also
use the Wilcoxon signed-rank test method [52] (a paired com-
parison) to verify the significance of differences between GLMA
and other approaches. For the general standard of Wilcoxon
signed-rank test (i.e., P-value < 0.05), the GLMA achieves a
significantly better performance than other approaches.

The Table I shows that accuracies of the GLMA outperform
other state-of-the-art baselines on seven benchmark datasets.
Compared with the CNN-multichannel exploring local semantic
features only or the bi-LSTM exploring global long-term depen-
dencies only, the GLMA performs much better because it learns
both simultaneously. When compared with the C-LSTM, the
CNN-LSTM-word2ve, the conv-RNN, and the SA-SNN model,
the GLMA achieves better results, although they all extract local
semantic features and global long-term dependencies by CNN
and RNN simultaneously. The main reason is that the proposed
GLMA extracts more discriminative global and local features
of text sequences by exploring the mutual relationship between
local semantic features and global long-term dependencies. The
SA-SNN yields similar accuracies as that of the GLMA, but the
SA-SNN relies more on prior knowledge, i.e., two versions of
word embedding: the word2vec and the Glove [53]. The GLMA
uses the word2vec as word embedding only but outperforms
SA-SNN. Moreover, the SA-SNN compresses global or local
features into a single vector which is not sufficient to capture all
important information of the whole text sequence [17]. In con-
trast, the GLMA keeps global long-term dependencies and local
semantic features of each position and explores the fine-grained
mutual effect of them to capture useful combined semantics and
filter irrelevant features.

The Table II in the Supplementary Material shows that the
GLMA outperforms other state-of-the-art baseline methods in
14 out of 16 Amazon product review datasets. According to the
Table I in Supplementary Materials and the Table II in the Sup-
plementary Material, the GLMA achieves a better performance
on datasets with long text sequences, e.g., the 20New, the Books,
the Electronics, the DVD, and the IMDB datasets. One reason is
that the proposed mutual attention mechanism reduces the depth
of the model and is beneficial to the gradient propagation for
strong long-term dependency learning. Moreover, the LGGA has
the advantages of extracting combined semantic features which
is especially important for long text sequence classification
tasks. Moreover, we find that the length of each sample varies

greatly in the Camera and the Magazines datasets. The GLMA
models mutual effects between global and local features subject
to the maximal length of inputs. However, the SLSTM is able to
handle text sequences with variable lengths and thus performs
better on both the Camera and the Magazines datasets.

D. Ablation Analysis

In this section, we conduct ablation studies to quantify the
influence of each component in the GLMA on five benchmark
datasets.

“global only”: This model extracts global long-term depen-
dency of text sequences only with a bi-LSTM. After that, a
weighted-over-time pooling operation and a fully connected
layer are applied to obtain final global representations. In other
words, this model corresponds to the upper branch in Fig. 1.

“local only”: This model extracts local semantic features
of text sequences only with a multi-scale CNN. After that, a
weighted-over-time pooling operation and a fully connected
layer are applied to obtain the final local features. This model
corresponds to the bottom branch in Fig. 1.

“W/O mutual-att”: The architecture of this model is the same
as that of the GLMA without the mutual attention mechanism
(without cross arrow lines between the two branches in Fig. 1).

“W/O LGGA”: A model that almost the same as the GLMA
but not using the local-guided global attention (without the arrow
line from the bottom branch to the upper branch in Fig. 1).

“W/O GGLA”: A model that almost the same as the GLMA
but not using the global-guided local attention (without the arrow
line from the upper branch to the bottom branch in Fig. 1).

“GLMA-max” and “GLMA-avg”: “GLMA-max” and
“GLMA-avg” are models replacing the weighted-over-time
pooling in GLMA with max-over-time pooling or average-over-
time pooling.

Comparison results and the P-values of Wilcoxon signed-rank
tests between GLMA and other ablation models show in Table II.
With P-value less than 0.05, it means that GLMA achieves
a significantly better performance than other ablation models.
The GLMA outperforms “local only” and “global only” models
which demonstrates the necessity of modeling both global and
local features simultaneously. According to the “W/O mutual-
att” column of Table II, the performance drops compared with
the GLMA which shows the effectiveness of the mutual attention
mechanism in the GLMA. Comparing the “W/O LGGA” and
the “W/O GGLA” with the GLMA model, the performance
drop demonstrates the effectiveness of the two parts in GLMA.
The model “W/O LGGA” combines long-term dependencies
sequentially without considering the semantic relatedness so
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TABLE III
COMPARISON RESULTS OF AVERAGE-OVER-TIME POOLING, MAX-OVER-TIME

POOLING AND WEIGHTED-OVER-TIME POOLING

the combined semantics cannot be extracted. On the other hand,
local semantic features extracted by the “W/O GGLA” may have
noises or redundancies but the GLMA addresses this problem
by learning global long-term dependencies to weight local se-
mantic features at different positions. The effectiveness of the
GLMA is further demonstrated through attention visualization
in Section G.

Moreover, we compare the GLMA with the GLMA using
max-over-time pooling (“GLMA-max”) and the GLMA us-
ing average-over-time pooling (“GLMA-avg”) instead of the
weighted-over-time pooling to verify the effectiveness of the
weighted-over-time pooling in the GLMA. Comparison results
and the P-values between GLMA and “GLMA-max”/“GLMA-
avg” are shown in Table III. It shows that GLMA with weighted-
over-time pooling mechanism improves about 1% comparing
to models with max-over-time pooling and average-over-time
pooling mechanism. In Table III, the P-values less than 0.05
further proves that the weighted-over-time pooling mechanism
significantly outperforms max-over-time and average-over-time
pooling mechanisms. These results demonstrate the effective-
ness of aggregating the most informative and discriminative
features into a single vector representation using the proposed
weighted-over-time pooling.

E. Qualitative Analysis

In this section, error analysis is performed on the GLMA,
the “W/O GGLA,” and the “W/O LGGA” using the Movie
Review dataset to investigate the necessity of the local-guided
global attention and the global-guided local attention in GLMA.
Table IV shows two examples that have been classified correctly
by the GLMA model. The first example is misclassified by
“W/O GGLA” but correctly classified by “W/O LGGA”. On
the contrary, the second example is misclassified by the “W/O
LGGA” while the “W/O GGLA” classified it correctly. For the
first example, the “W/O GGLA” fails to extract the key local
negative features soft and stinky and is misled by other obvious
local positive feature so ripe, which cause the misclassification.
However, the global-guided local attention in both the GLMA
and the “W/O LGGA” uses global long-term dependencies as
guiding information to learn to assign more weights to key local
semantic features soft and stinky in this example which helps to
correctly classify it. For the second example, the “W/O LGGA”
fails to capture the combined semantic but manages old problems
because the global long-term dependencies are extracted from a
sequential recurrent network and combined equally. It extracts
local features with negative polarities only such as it isn’t,

is unfamiliar, old problems which result in misclassification.
However, both the GLAM and the “W/O GGLA” classified
it correctly because they use the local-guided global attention
to capture global long-term dependencies and combine them
with learned weights to obtain distant combined semantics (but
manages old problems).

F. Mutual Attention Visualization

In this section, mutual attention weights of each head and
scalar scores of weighted-over-time pooling are visualized to
investigate how global long-term dependencies and local se-
mantic features are aligned and affect each other as well as
the effectiveness of weighted-over-time pooling operation. The
proposed mutual attention mechanism contains 8 heads of each
local-guided global attention and global-guided local attention,
respectively. After mutual attention, both global long-term de-
pendencies and local semantic features are fed into the classi-
fication layer through the weighted-over-time pooling. So for a
position, the bigger the scalar value of the global long-term de-
pendency or the local semantic feature is, the greater the impact
on the loss function is. Thus, we could cautiously interpret the
classification results using our mutual attention weights and the
scalar scores of weighted-over-time pooling.

The visualization of mutual attention and weighted-over-
pooling of a sample from the Movie Review dataset (the first
sample in Table IV) are shown in Figs. 4 and 5, which is correctly
classified to the Negative category.

Fig. 4 shows the heat maps of the scalar scores’ distribution
(pH , subfigure (a)) and global attention weights (Ai in eq. (14),
subfigures from (b) to (i)) of 8 heads. In subfigure (a), the position
at words narrative and film are chosen by the weighted-over-time
pooling because a darker color indicates higher importance for
the GLMA final prediction. In subfigure (b) to (i), the row of local
semantic features at the position of narrative assigns weights
for global long-term dependency at all positions, and especially
assigns more weights for global long-term dependency at the
position of stinky in subfigure (b) to (d), ripe in subfigure (e) and
(g), and can’t help in subfigure (h) to (i), respectively. Similarly,
the row of local semantic features at the position of film assigns
larger weights to global long-term dependencies at the position
of stinky in subfigure (b) to (d), ripe in subfigure (e) to (f), and
can’t help in subfigure (g) to (h), respectively. That is the local-
guided global attention tries to combine distant semantics (such
as, ripe can’t help stinky in this sample) which are discriminative
features for correct classifications.

Similarly, Fig. 5 shows the heat maps of the scalar scores
distribution (pC , subfigure (a)) and local attention weights (Bi

in eq. (17), subfigures from (b) to (i)) of 8 heads. Informative
positions at pivotal narrative point, so ripe, and soft and stinky
are chosen by weighted-over-time pooling in subfigure (a) for
the final prediction. In subfigure (b), the global long-term de-
pendencies of these chosen positions distribute more weights
to local semantic features narrative, film, and stinky. Similar to
subfigures from (c) to (i), the global long-term dependencies also
help to distribute weights focusing on narrative, film, and stinky
which are the most key local features for a correct prediction in
this sample.
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TABLE IV
ERROR ANALYSIS FOR THE NECESSITY OF GLOBAL-GUIDED LOCAL ATTENTION AND LOCAL-GUIDED GLOBAL ATTENTION. EXAMPLES IN THIS TABLE ARE

SELECTED FROM THE MOVIE REVIEW DATASET

Fig. 4. Visualization of local-guided global attention (LGGA) weights and the scalar scores of weighted-over-time pooling of a sample from Movie Review
dataset. Blue colors represent local semantic features at each position and green colors represent global long-term dependency at each position.

Fig. 5. Visualization of global-guided local attention (GGLA) weights and the scalar scores of weighted-over-time pooling of a sample from Movie Review
dataset. Blue colors represent local semantic features at each position and green colors represent global long-term dependency at each position.
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Fig. 6. Average gradient norms of the first L/2 positions of the forward LSTM of the GLMA and the SA-SNN.

Judging by the combined semantics in Fig. 4 and key local
features in Fig. 5, the GLMA is undoubtedly able to classify the
sample into a Negative category.

G. Gradient Analysis

In this section, we compare the variations of average gradient
norm of the LSTM in the GLMA and the SA-SNN during the
training stage. It demonstrates the abilities of the GLMA in
reducing the model depth and alleviating the gradient vanishing
problem. We re-implement the SA-SNN with strong confidence
that the replicated results are almost the same as the original pa-
per. Note that we calculate the average gradient norm of the first
L/2 positions of training samples where gradients vanish easily.
L denotes the average sentence length of samples. The average
gradient norm is calculated in the forward direction LSTM of
the GLMA only and the first forward direction LSTM layer of
the SA-SNN, respectively. Both models employ word2vec as
word embedding and the same training configurations (includ-
ing learning rate, batch-size, and 50 training epochs for each
dataset).

Fig. 6 shows the average gradient norms of the first L/2
positions of forward LSTM of the loss function at each training
steps of the forward LSTM in the GLMA and the SA-SNN on
the CR, the TREC, and the Movie Review datasets. According
to Fig. 6, the average gradient norm of the first L/2 positions of
the GLMA is bigger than that of the SA-SNN. The propagation
of more gradients to the first L/2 positions of the forward LSTM
in the GLMA helps to alleviate the gradient vanishing problem.

H. Influences of Hyper-Parameters

Experiments on the CR, the 20New, and two Amazon prod-
uct reviews including the Books and the Kitchen datasets are
conducted to study influences of two key hyper-parameters: the
number of heads (m) and the dimension of heads (k).

1) Various Numbers of Heads (m): mvaries from 2 to 14 with
interval of 2 and other hyper-parameters are kept unchanged.
Experimental results are shown in Fig. 7. One can observe the
following facts: 1) The performance improves when m is less
than or equal to 8 which shows that the GLMA is able to attend
features in different representation subspaces and aggregation
complex features with more heads. 2) However, the performance
drops when m is larger than 8, such as m > 10, because the

Fig. 7. Average and stand deviations of accuracies (%) of the GLMA with
m = 2, 4, 6, 8, 10, 12 and 14 on CR, 20New, Books, and Kitchen datasets.

Fig. 8. Average accuracies (%) and stand deviations of GLMA with different
value of the dimension of head (k) on CR, 20New, Books and Kitchen datasets.

model is too complicated for the datasets and suffers from over-
fitting.

2) Dimension of Head (k): In the experiments, dimension
k varies but other hyper parameters remain unchanged. Ex-
perimental results are listed in Fig. 8, it shows that k = 64 is
the best choice which always achieves the best accuracies. The
experimental results are consistent with the setting in [31]. When
the subspace dimension of k is too small, the mutual attention’s
attending features in different subspaces may be insufficient. In
contrast, the model may become too complicated and lead to
over-fitting for large values of k.

I. Computational Efficiency Analysis

One of the cons of the GLMA is that the CNN block has to
wait for the sequential process of the Bi-LSTM block, especially
for long text sequences. However, in our practical experiments,
the average length of text sequences is not so long that the effect
of the processing time of Bi-LSTM is little. The computation of
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the proposed mutual attention mechanism can be parallelized so
that it does not require much time for train or test. We conduct an
experiment on the 20New dataset to test the computational time
consumption of both the GLMA and the SA-SNN. The 20New
dataset consists of 7520 training and 5563 testing samples with
an average length of 429. The GLMA spends 0.42 seconds
in training for each sample and 6.544 seconds in testing on
average. However, the SA-SNN spends 0.52 seconds in training
for each sample and 7.868 seconds in testing on average. These
results demonstrate that the GLMA has a higher computational
efficiency in comparison with the SA-SNN.

V. CONCLUSION

In this work, a global-local mutual attention model is proposed
to capture both local semantic features and global long-term
dependencies effectively. The mutual attention mechanism con-
tains a local-guided global attention which keeps the useful
information of global long-term dependencies and extracts com-
bined semantics. Moreover, it also has a global-guided local
attention which extracts the most relevant and informative local
semantic features. A weighted-over-time pooling is developed
for distinguishing discriminative features of text sequences for
classification which is more effective than the average-over-time
pooling and the max-over-time pooling. Our model demon-
strates a better performance on seven benchmark datasets and
sixteen Amazon product reviews datasets. Additionally, ablation
studies, qualitative analysis, and attention weights visualization
are provided to further prove the effectiveness of the proposed
model. In this paper, we find a kind of mutual effects between
global features and local features in text sequences. Our future
work will focus on exploring mutual effects between other differ-
ent information from the same data. For example, interactions
among high-level features (e.g. shape information in images)
and low-level features (e.g. texture information in images).
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